머신러닝
머신러닝 - ex06_타이타닉_앙상블모델
인생진리
2023. 2. 15. 00:48
### 전처리된 파일 불러오기
import pandas as pd
X_train = pd.read_csv('X_train.csv')
X_test = pd.read_csv('X_test.csv')
y_train = pd.read_csv('y_train.csv')
X_train.shape, X_test.shape, y_train.shape
### 앙상블 모델 사용하기
- 머신러닝에서 성능이 좋은 모델
- 여러 개의 DecisionTree를 사용하는 모델
#### RandomForest 모델
from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(n_estimators=90, max_features=0.3, max_depth=5)
# 경고 무시하는 기능
import warnings
warnings.filterwarnings('ignore')
forest.fit(X_train, y_train)
# 학습한 모델로 예측
pre = forest.predict(X_test)
pre
# 평가 결과 서식 불러오기
gender_sub = pd.read_csv('./data/gender_submission.csv')
# 예측한 값 집어넣기
gender_sub['Survived'] = pre
# 예측값 내보내기
gender_sub.to_csv('RFsub.csv',index =False)
#### AdaBoost 모델
from sklearn.ensemble import AdaBoostClassifier
adaboost = AdaBoostClassifier(n_estimators=500)
adaboost.fit(X_train,y_train)
pre = adaboost.predict(X_test)
pre
#### GBM(Gradient Boosting Machine)
from sklearn.ensemble import GradientBoostingClassifier
gbm = GradientBoostingClassifier(n_estimators=500, learning_rate=0.1,max_depth=5)
gbm.fit(X_train,y_train)
pre =gbm.predict(X_test)
pre
#### XGBoost
!pip install xgboost
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
XGBClassifier()
#### LGBM(Light GBM)
!pip install lightgbm
import lightgbm
from lightgbm.sklearn import LGBMClassifier